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Abstract— Differentiable physics simulation provides an
avenue to tackle previously intractable challenges through
gradient-based optimization, thereby greatly improving the
efficiency of solving robotics-related problems. To apply differ-
entiable simulation in diverse robotic manipulation scenarios,
a key challenge is to integrate various materials in a unified
framework. We present SoftMAC, a differentiable simulation
framework that couples soft bodies with articulated rigid
bodies and clothes. SoftMAC simulates soft bodies with the
continuum-mechanics-based Material Point Method (MPM).
We provide a novel forecast-based contact model for MPM,
which effectively reduces penetration without introducing other
artifacts like unnatural rebound. To couple MPM particles with
deformable and non-volumetric clothes meshes, we also propose
a penetration tracing algorithm that reconstructs the signed
distance field in local area. Diverging from previous works,
SoftMAC simulates the complete dynamics of each modality
and incorporates them into a cohesive system with an explicit
and differentiable coupling mechanism. The feature empowers
SoftMAC to handle a broader spectrum of interactions, such
as soft bodies serving as manipulators and engaging with un-
deractuated systems. We conducted comprehensive experiments
to validate the effectiveness and accuracy of the proposed
differentiable pipeline in downstream robotic manipulation
applications. Supplementary materials are available on our
project website at https://damianliumin.github.io/SoftMAC/.

I. INTRODUCTION

Interactions between diverse materials are prevalent in the
realm of robotic manipulation. For instance, the collision
between glass and wine during a pouring task as in fig. 1,
or the perpetual interplay between a tortilla and its fillings
when crafting a taco. As a number of differentiable physics
engines emerge to tackle learning and control problems
[1], [2], [3], [4], [5], [6], it is tempting to unify different
materials in a single simulator, thus supporting a wide range
of manipulation tasks. Nevertheless, developing a general-
purpose physics simulator is non-trivial, as different types
of materials often need different physical models due to the
dominant physical behaviors [7].

Depending on their dynamical behaviors, most daily ob-
jects can be simulated as: 1) soft bodies, like elastic, plas-
tic, elasto-plastic objects and liquid; 2) rigid bodies, either
articulated or not; 3) clothes, as well as other thin-shell
objects with similar geometric and physical properties (e.g.,
tortilla). The interactions between these three modalities
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Fig. 1: To pour water into a glass in differentiable physics
simulation, we need realistic contact model for soft-rigid
coupling and correct gradient calculation. Then same applies
to the interactions between soft bodies and clothes.

encompass a wide spectrum of manipulation tasks. Rigid-
clothes coupling has been extensively discussed in previous
works [8], [9], [10]. Meanwhile, differentiable soft-cloth
coupling remains a rarely explored topic in current literature,
despite its prevalence in robotic manipulation scenarios such
as making taco. A line of works propose methods for
soft-rigid coupling. PlasticineLab [11], FluidLab [4] and
DexDeform [12] deploys Material Point Method (MPM) to
simulate soft bodies, but they only simulate the kinematics
of rigid bodies, implying that force exerted on soft bodies
cannot react on rigid bodies. Maniskill2 [13] introduces two-
way dynamics coupling, but its pipeline is not differentiable.
Besides, contact models for MPM in these works suffer from
artifacts like penetration and unnatural rebound.

In this paper, we present a differentiable pipeline to couple
soft bodies with articulated rigid bodies and clothes. Follow-
ing previous works, we adopt MPM for soft bodies due to
its ability to simulate a large variety of deformable materials
and physical phenomena (e.g., Magnus effect and buoyancy)
[14]. MPM struggles with delicate boundaries. Scaling down
grid size and time step alleviates the problem, but is not
always feasible in robotic simulation where computational
efficiency should be balanced. Gu et al. [13] apply particle

https://damianliumin.github.io/SoftMAC/


Simulator Differentiable MPM Rigid Cloth Coupling
Elastic Plastic Liquid Dynamics Articulated Contact MPM-Rigid MPM-Cloth

PlasticineLab [11] ✓ ✓ Grid One-way \
FluidLab [14] ✓ ✓ ✓ ✓ * Grid/Particle One-way \
DexDeform [12] ✓ ✓ † Grid One-way \
ManiSkill2 [13] ✓ ✓ ✓ ✓ ✓ Grid/Particle Two-way \
SoftMAC (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ Forecast Two-way Two-way

TABLE I: Comparison with other popular MPM-based simulators. *FluidLab supports modeling rigid bodies using kinematic
skeletons or MPM. While the latter can simulate dynamics of rigid bodies, it is limited to simple shapes without articulation,
which is not considered as general-purpose rigid body simulation. †DexDeform provides a simulator tailored for deformable
object manipulation with the Shadow hand. The specialization limits its direct applicability to other articulated rigid bodies.

forces to reduce penetration, but the method introduces
problems such as unnatural rebound. To achieve realistic col-
lision effects, we introduce a novel method called forecast-
based contact model to manage the boundary conditions
for MPM. Specifically, the model takes a grid-to-particle
transfer to look ahead in the grid operation stage, imposes
constraints on particles within the contact region, and then
adjusts the grid velocity accordingly. Forecast-based contact
model requires signed distance fields (SDFs) to penalize
penetration. While the definition of SDF is straightforward
for volumetric objects, it is hard to determine the sign on
nonvolumetric meshes. To solve the problem, we propose a
penetration tracing algorithm that capitalizes on the localized
motion of particles to reconstruct the SDF within confined
zones. In this way, the contact model can be applied to both
soft-rigid and soft-cloth coupling.

Previous differentiable MPM simulators [4], [11], [12]
model external materials as kinematic skeletons, without
explicitly considering forces, mass distribution, or other
dynamic factors. While it simplifies the pipeline, the sim-
ulators cannot generalize to scenarios where dynamics of
both materials is involved (e.g., underactuated systems). We
overcome the problem by utilizing independent dynamics
simulation for each modality and incorporating them into
a cohesive system. As in [13], [15], we handle the contact
between MPM and other materials explicitly, but make the
whole process differentiable. Specifically, we copy motion
of rigid bodies and clothes to the soft body simulator, and
transfer force back in forward simulation. Then we apply
chain rule in reverse direction along the computation graph
to propagate gradients between different simulators. The
gradient information allows us to control the motion between
different modalities by optimizing the force acting on any
point in the simulation. Code of the proposed simulator,
which we call SoftMAC, is released at our project website.

Our main contributions can be summarized as follows:
• We propose a novel forecast-based contact model for

MPM, which reduces penetration without introducing
artifacts like unnatural rebound.

• We present a penetration tracing algorithm for the con-
tact between MPM and non-volumetric cloth meshes.

• To the best of our knowledge, SoftMAC is the first
differentiable robotic simulator to support two-way dy-
namics soft-rigid and soft-cloth coupling.

II. RELATED WORK

A. Differentiable Physics-based Simulation

Physics simulation provides an avenue to avoid real-world
damages, accelerate robotics-related problem solving, and es-
tablishes standardized benchmarks to evaluate different algo-
rithms. A branch of works provide simulation for articulated
rigid bodies [16], [17], [18], [19], which is fundamental in
robotics. With advances in deformable object manipulation,
an increasing number of physics engines are also proposed
for clothes and soft bodies [20], [21]. Recent developments
in automatic differentiation methods [22], [23], [24] boost
the prosperity in differentiable physics simulators, which
can convert challenging control tasks into gradient-based
optimization problems. Several differentiable simulators are
developed for rigid bodies [1], [2], clothes [6], [10], [25],
thin shells [26], and soft bodies [27], [28]. A line of works
[3], [4], [11] simulate soft bodies with material point method
(MPM) to support various materials and physical processes.
We also deploy MPM for soft bodies in this work.

B. Coupling Soft Bodies with Other Modalities

Unifying soft bodies with other modalities in a single
framework requires the design of contact mechanisms be-
tween different materials. A number of methods have been
proposed in robotics and computer graphics area. Du et al.
[14] and Harada et al. [29] provide simulation methods to
couple cloth and fluid computed by using smoothed particle
hydrodynamics. MuJoCo [16] and Bullet [17] enable ma-
nipulating soft bodies simulated with finite element method.
However, these methods only support a limited number of
soft body materials. Recent works based on MPM provide the
opportunity to couple various types of soft bodies with other
modalities. PlasticineLab [11] and FluidLab [14] provide
interaction with rigid bodies by penalizing grid velocity di-
rectly, but their contact models are one-way. Maniskill2 [13]
transfers force back to rigid bodies to enable bidirectional
contact, and penalize particles in their contact models to
alleviate penetration. Nevertheless, their pipeline does not
provide gradient information. Our work is based on a novel
contact model better at reducing penetration. It also pro-
vides bidirectional contact for both soft-rigid and soft-cloth
coupling, and make the process differentiable. We present
a comparison in terms of differentiability, material types,



(a) Contact Models (b) Penetration Tracing

Fig. 2: (a) Pour water into a thin glass. Grid-based model (left) leads to severe penetration. Particle-based model (middle)
also causes a few particles to penetrate the glass. Forecast-based model (right) achieves the most robust performance. (b)
Drag four corners of a towel to squash a plasticine. Towel goes through the plasticine without penetration tracing (left).
Both the plasticine and towel deform due to the contact after adding the algorithm (right).

and coupling methods with other MPM-based simulators in
table I. SoftMAC covers a wider range of materials and their
interactions, thereby facilitating a more extensive array of
robotic manipulation scenarios.

C. Robotic Manipulation with Differentiable Simulation

Differentiable physics simulation has been applied in
several robotic manipulation methods [26], [30], [31], [32].
DexDeform [12] trains a skill model from human demonstra-
tions, and uses a gradient optimizer to refine the trajectories
planned by the skill model to generate more demonstrations.
SAGCI [33] proposes a model-based learning method with
differentiable simulation to online verify and modify the en-
vironment model during interaction. SAM-RL [34] combines
differentiable physics simulation and rendering to propose a
sensing-aware learning pipeline that selects an informative
viewpoint to monitor the manipulation process.

III. CONTACT MODELS

A. Preliminary

We build our soft body simulator based on MLS-MPM
[35]. For simplicity, we use MPM for MLS-MPM in this
section. In a simulation loop, the matter is interpolated back
and forth between particle and grid representations. Consider
a system that consists of np particles and ng grid nodes.
Denote xp,vp,mp ∈ R3np as positions, velocities and masses
of particles, and vg, pg,mg ∈ R3ng as velocities, momentum
and masses of grid nodes. We duplicate the masses to
higher dimension for the convenience of vector operations.
W : R3np →R3ng×3np calculates a sparse matrix that contains
weights for the 33 neighbouring grid nodes surrounding each
particle. Superscript denotes the time step of a variable.

a) Particle-to-Grid (P2G): MPM first computes stress
based on the constitutive model, and then transfer particles’
momentum and masses to background grid using the inter-
polation matrix W (xn

p):

pn+1
g =W (xn

p)(m
⊤
p vn

p + pn
d),

mn+1
g =W (xn

p)m
n
p.

(1)

where pn
d is a momentum term that reflects internal forces.

b) Grid Operation: The discrete equations of momen-
tum are solved on grid nodes. Boundary conditions BC(·) can
be enforced at this stage to set constraints on grid velocity:

v̂n+1
g = (pn+1

g )⊤(1/mn+1
g ),

vn+1
g = BC(v̂n+1

g ).
(2)

c) Grid-to-Particle (G2P): The final stage transfers
velocity back to particles, updates deformation information,
and advects particles based on the new velocities.

vn+1
p =W (xn

p)
⊤vn+1

g ,

xn+1
p = xn

p + vn+1
p ∆t.

(3)

Contact between MPM and other modalities is typically
handled on the background Eulerian grid. Grid-based contact
model directly zeros out the tangent component of grid veloc-
ity through BC(·) in eq. (2). Reaction force can be computed
via momentum change F = ∆p/∆t. However, the grid nature
makes it challenging to accurately represent and handle
intricate geometries and moving boundaries. The method
leads to severe penetration when coupling with delicate
mesh-based objects. Although scaling up grid resolution can
alleviate the problem, it is typically not feasible in robotic
simulation due to efficiency constraints.

Gu et al. [13] find that particle-based contact model re-
duces penetration. Specifically, the method approximates the
contact surface as a spring: as a particle crosses the contact
boundary with distance d > 0, a force F =−kd is exerted to
push it back. Essentially, the penalty force also works as an
indirect constraint for grid velocity by adding a momentum
term F∆t to eq. (1), but provides more fine-grained control.
Particle-based contact model brings a problem on how to
choose k. With a small k, penetration cannot be effectively
alleviated. On the other hand, increasing k will lead particles
to rebound unnaturally near the boundary. Alleviating one of
the artifacts makes the other worse.

B. Forecast-based Contact Model

We formulate the goal as reducing the number of pene-
trations at the end of each simulation loop. Since particle
positions xn+1

p are advected based on velocities, we focus on
how to set constraints on grid velocities to obtain vn+1

p that
can achieve the goal. The idea of looking ahead and then



Fig. 3: Illustration of the contact models. Grid-based model
directly computes SDF on grid nodes. Particle-based model
computes SDF on particles and applies penalty on them.
Forecast-based model takes a forecast step to compute SDF
on particles and then adjust grid velocity accordingly.

adjusting grid velocity gives our method the name forecast-
based contact model. It also provides an intuition why the
method has better performance in reducing penetration.

We use W as short for W (xn
p) from this section. Our

method first takes a G2P transfer vn+1
init = Wv̂n+1

g . Then we
apply a boundary condition BCp(·) on the particle velocities,
which computes constrained velocities vn+1

tgt that are supposed
to avoid penetration. Given vn+1

tgt , we transform our goal into
an optimization problem:

vn+1
g = argmin

vg

∥W⊤vg − vn+1
tgt ∥2. (4)

The problem above can be tackled using iterative solvers
like conjugate gradient method, whose computation overhead
grows linearly with the number of iterations. However, we
find that one-step gradient descent suffices in practice:

vn+1
g = v̂n+1

g −αW (W⊤vg − vn+1
tgt ), (5)

where α is a predefined step size. The extra computation
cost is equivalent to interpolating a particle property to grid
and transferring it back. Besides, the derivatives of eq. (5)
is simple enough to be directly obtained through automatic
differentiation methods.

Next, we introduce the details of BCp(·). Given a par-
ticle with velocity vin, we first check whether it is within
the contact region by comparing signed distance d with a
threshold d̂. If d < d̂, the contact point is approximated with
the nearest point on the boundary, whose velocity is vc. For
rigid bodies, vc is the linear velocity at the contact point. For
clothes, we find three vertices on the Lagrangian mesh that
make up the contact surface, and compute weighted average
of their velocities based on the barycentric coordinate of
the contact point. We then decompose the relative velocity
vrel = vin − vc into a normal component vn and a tangential
component vt . To penalize the velocity, we drop vn and decay
vt with friction:

vout = vt ·max(0,1−µ∥vn∥/∥vt∥)+ vc, (6)

where µ is the friction coefficient. We also utilize two other
techniques: 1) Blend the original and modified velocities
with a smoothness factor s = min{exp(−βd),1}, given by
v′out = svout +(1− s)vin. β is a predefined smoothness factor.
The method reduces drastic state changes and improves

Fig. 4: Given a target face (yellow edge), we search for the
triangles in its neighboring area (red). If a particle is still in
contact after system state changes, its nearest face should be
within the neighboring area due to the small time interval.

gradient quality. 2) Advect the particle with vout , and if
penetration happens, add a component to vout to ensure
that the particles are moved to the nearest legal position.
Given velocity change, we can obtain impulse exerted on the
particle, thereby computing the reaction force F . The spatial
force is accumulated on each rigid body link. For clothes,
we distribute F to three nodes of the nearest triangle based
on the barycentric coordinate of the contact point.

C. Comparisons between Contact Models

As shown in fig. 3, both grid-based and forecast-based
contact models handle boundaries when solving grid veloc-
ities. The difference lies in that grid-based model computes
SDF function on the static MPM grid nodes, while our
method computes SDF function on Lagrangian particles that
move with the material, allowing for more precise interaction
with complex boundaries. Particle-based contact model also
computes SDF on particles, and applies a penalty term during
P2G transfer. However, the method is agnostic about how
the penalty influences future particle states. In contrast, our
method takes a forecast step to see whether the particles will
penetrate the boundary and utilizes the information to direct
the update of grid velocity.

D. Penetration Tracing for Soft-Cloth Coupling

The contact models require signed distance to couple
MPM soft bodies with objects represented as meshes. For
rigid bodies, we pre-compute the signed distance field on
compact grid points within the bounding boxes, and look
up signed distance by interpolating the grid values during
simulation. However, the method is not applicable to soft-
cloth coupling because meshes of clothes varies by time.
Besides, such meshes are non-volumetric, which means that
both sides can be considered as the outward surface. While
it is feasible to manually define a positive side for some
simple shapes like a square, the idea cannot generalize to
special geometries such as a Möbius strip.

To fix the problem, we reconstruct SDF for cloth meshes
by computing distance and sign separately. We first search
the particle-face pairs to find the nearest face for each
particle, and compute absolute distances accordingly. The
process can be accelerated with spatial hashing. The sign
indicates whether a particle penetrated the mesh. Therefore,
we assign a binary penetration state zn for each particle and
trace it throughout the simulation process. Each time the
position of particles or meshes change, we check whether



Fig. 5: Computation graph for soft-rigid coupled system (the
same in soft-cloth coupling). Blue nodes: state of MPM
simulation. Orange nodes: state of articulated rigid body
simulation. Green nodes: actions and external forces. A line
is connected between two nodes if and only if we directly use
one state or action to compute the resulting state. The gray
box illustrates the details of forecast-based contact model.

the state change will lead to penetration. If a particle moves
to the other side of the mesh, we update the penetration state
at the next time step, given by zn+1 = 1−zn. Otherwise, zn+1

inherits the value of zn.
The complication lies in how to check whether penetration

happens. We provide a method by utilizing the locality of
motion in simulation. The small time interval in physics
simulation suggests that system state only changes a bit at
each time. If a particle is in contact with face i at time n
and face j at time n+ 1, then we assume that faces i and
j are within the neighboring area of each other. Based on
this idea, we pre-compute the neighboring triangles around
each face using breadth first search, and define a consistent
orientation for faces in this local area. Then we can directly
check whether a particle resides on the same side of the area
during simulation. An illustration can be found in fig. 4. We
discuss limitations of the algorithm in section VI.

IV. DIFFERENTIABLE SIMULATION DESIGN

A. Forward Simulation
Denote sn

M as state of MPM object at time n. The forward
simulation for MPM is defined as FM(sn

M). sn
D and an

D repre-
sent the state and action of the manipulator (articulated rigid
bodies or clothes). The forward simulation for manipulator is
FD(sn

D,a
n
D). While both simulations can be conducted inde-

pendently, interactions between the two modalities cannot be
directly simulated. Therefore, we provide explicit coupling
between these simulators as in [13], [15].

Specifically, we modify the simulations as follows. The
MPM simulator takes poses and velocities of the manipula-
tors as inputs. Based on the contact models, it updates MPM
state and computes the reaction force on the manipulator.
Manipulator simulation takes external force as an additional
input, which is involved in the computation of the next state:

sn+1
M ,Fn+1 = F ′

M(sn
M,sn

D),

sn+1
D = F ′

D(s
n
D,a

n
D,F

n+1).
(7)

In a simulation loop, we execute F ′
M first, with the manip-

ulators as boundary conditions. Then we transfer the force

back and execute F ′
D. The computation graph is displayed in

fig. 5. We define state of the coupled system as sn = (sn
M,sn

D),
and action as an = an

D. The forward simulation functions as:

sn+1 = (sn+1
M ,sn+1

D ) = F (sn,an). (8)

B. Backward Gradients

The differentiable operations inside MPM simulation F ′
M

help us gather the Jacobian matrices ∂ sn+1
M

∂ sn
M

, ∂ sn+1
M

∂ sn
D

, ∂Fn+1

∂ sn
M

,
∂Fn+1

∂ sn
D

. The manipulator simulation F ′
D computes ∂ sn+1

D
∂ sn

D
,

∂ sn+1
D

∂an , ∂ sn+1
D

∂Fn+1 . Based on these Jacobian matrices, we apply
the chain rule to obtain gradients for every system state at
each time step.

sn
M is directly involved in the computation of sn+1

M , and
affects sn+1

D through the contact force Fn+1. Consequently,
the gradient of sn

M has two components:

∂L

∂ sn
M

=
∂L

∂ sn+1
M

∂ sn+1
M

∂ sn
M

+
∂L

∂ sn+1
D

∂ sn+1
D

∂Fn+1
∂Fn+1

∂ sn
M

. (9)

sn
D influences sn+1

D in two ways. In addition to the one
inherent in FD(sn

D,a
n
D), sn

D affects the contact force Fn

between MPM and the manipulator, and the force in turn
impacts on sn+1

D . Another part of the gradient comes directly
from sn+1

M , which takes sn
D as the boundary:

∂L

∂ sn
D
=

∂L

∂ sn+1
D

(
∂ sn+1

D
∂ sn

D
+

∂ sn+1
D

∂Fn+1
∂Fn+1

∂ sn
D

)+
∂L

∂ sn+1
M

∂ sn+1
M

∂ sn
D

.

(10)
Finally, an

D can be directly computed from ∂L
∂ sn+1

D
inside the

manipulator simulation:

∂L

∂an
D
=

∂L

∂ sn+1
D

∂ sn+1
D

∂an
D

. (11)

It is worth noting that ∂ sn+2
M

∂an
D

=
∂ sn+2

M
∂ sn+1

D

∂ sn+1
D

∂an
D

. The gradients

propagated from sn+2
M to an

D explain why we can define losses
on soft bodies to optimize the actions on the manipulators.

V. EXPERIMENTS

In this section, we introduce our system implementation,
and conduct quantitative and qualitative evaluations to an-
swer the following questions: 1) Does forecast-based contact
model produce more realistic simulation results? 2) Can
penetration tracing effectively support soft-cloth coupling?
3) How accurate is the gradient information provided by
the proposed two-way differentiable dynamics coupling? In
all the experiments, we maintain a CFL number below the
critical threshold of 0.3 to ensure that the time integration
scheme remains stable.

A. System Implementation

We implement a differentiable soft body simulator using
DiffTaichi [24]. Corotated constitutive models are used to
simulate fluid, elastic and plastic materials. We refer readers
to FluidLab [14] for more details about simulating different
materials using MPM. We adopt two differentiable physics



Fig. 6: Shake a container with liquid. Grid-based model
causes severe penetration. Particle-based model also faces the
problem if the penalty coefficient k is not high enough. In-
creasing k alleviates penetration, but makes particles rebound
more unnaturally near boundary. Forecast-based model re-
sults in least penetrations without bringing obvious artifacts.

engines, Jade [36] and DiffClothAI [10], for the simulation
of articulated rigid bodies and clothes, respectively. In each
simulation loop of the coupled system, we take actions, ma-
nipulator states, and MPM states as input, calculate contact
in the soft body simulator, and transfer external force to
the rigid body / clothes simulator. MPM typically requires a
smaller time interval than the other two simulators. In this
case, we take several MPM substeps and average the force
on the manipulator. Gradients are calculated accordingly.

B. Checking Forecast-based Contact Model

We first conduct a quantitative experiment to compare
forecast-based contact model with the baselines (grid-based
and particle-based models). Specifically, we initialize the 2D
scene with fluid inside a circular rigid container, which has
radius r and thickness d. The container shakes left and right
at a constant speed, and we record the number of particles
penetrating the container.

We choose step size α = 0.2 for the one-step gradient
descent in forecast-based contact model, and the objective
in eq. (4) decreases by 83.1% on average. As shown in ta-
ble II, forecast-based model achieves the best performance in
reducing penetration. The computation efficiency lags behind
baselines as we introduce additional P2G and G2P transfers.
Another empirical observation is that while increasing the
penalty coefficient k in particle-based contact model can
alleviate penetration, it also exacerbates unnatural rebound
near the boundary. Meanwhile, our method does not have
this problem. Visualization for the last frame is provided in
fig. 6. We also conduct a qualitative experiment: pour liquid
into a thin glass with high velocity. Results shown in fig. 2a
are consistent with our quantitative experiment.

C. Checking Penetration Tracing

We drag the four corners of a towel to squash a plasticine.
The control points are moved down from their initial posi-
tions at a constant speed. We add and remove the penetration

Contact Model Thickness #Penetration↓ Unnatural
Rebound Time (s)

Grid 1/32 449 ✗ 4.90
1/64 5998 ✗ 4.81

Particle (k=400) 1/32 12 ✗ 4.45
1/64 1512 ✗ 4.71

Particle (k=600) 1/32 0 ✓ 4.33
1/64 217 ✓ 4.68

Forecast (Ours) 1/32 0 ✗ 5.24
1/64 3 ✗ 5.15

TABLE II: Experiment results of shaking containers of dif-
ferent thickness d with liquid for 1100 frames. #Penetration
denotes the number of particles outside the container in the
final frame. Unnatural rebound occurrences are recorded.
Simulation time is compared on an NVIDIA Tesla T4 GPU.

tracing algorithm to demonstrate the effectiveness of our
method in soft-cloth coupling. The results are displayed in
fig. 2b. We find that lacking the penetration information
causes the towel to go though the plasticine directly. How-
ever, with penetration tracing, the plasticine is squashed and
the towel deforms due to the reaction force. We conduct the
comparison on particle-based contact model. With forecast-
based model, the towel cannot pass the plasticine even after
removing the tracing algorithm in this case.

D. Checking Two-way Differentiable Dynamics Coupling

We check the quality of two-way differentiable dynamics
coupling under 6 robotic manipulation tasks. The first three
tasks can also be accomplished within current simulations
that employ kinematic skeletons as controllers. However, pull
door, make taco, and push towel necessitates the utilization
of SoftMAC as the dynamics of both modalities must be
incorporated to successfully complete these tasks.

We formulate our problem as trajectory optimization:
Given an action sequence a = (a1,a2, · · · ,aT ) and the result-
ing state sequence s = (s1,s2, · · · ,sT ), we define an objective
function f (a,s) and find the optimal actions through

a∗ = argmin
a

f (a,s). (12)

We use the gradients provided by SoftMAC and first-order
optimizers (SGD for pouring water (franka) and Adam [37]
for other tasks) to solve eq. (12). The number of variables to
optimize ranges from 200 to 1150. It is worth noting that for
more complicated tasks, the trajectories are prone to get stuck
in local optima. Initialization from teleportation or learned
policies helps overcome the problem [12], but is beyond the
scope of our experiments.

a) Rigid2MPM: We evaluate soft-rigid coupling on
three tasks. In pour water, we conduct 6 DoFs control over a
glass to pour liquid into a bowl. In pour water with Franka,
we conduct 7 DoFs control over the Franka arm to pour
liquid from a bottle into a tank. In squeeze plasticine, we
conduct 2 DoFs control over a gripper to squeeze the 16200
DoFs plasticine into target shape. Losses are computed as the
Chamfer distance between current and target positions of the



(a) Pour water (b) Pour water (Franka) (c) Squeeze plasticine

(d) Pull door (e) Make taco (f) Push towel

(g) Loss curves

Fig. 7: Experiment results of coupled differentiable simulation. (a) Control glass to pour the liquid into a bowl. (b) Control
Franka arm to pour the liquid into a tank from a bottle. (c) Control Franka gripper to squeeze the plasticine into target
shape. (d) Control 2 selected points on the tortilla to fold the taco into target shape. (e) Control soft gripper to pull the door
into target angle. (f) Control soft gripper to push the towel into target pose. In all tasks, their respective training loss curves
are plotted on the right. Full trajectories are displayed in our video.

particles. In the pouring tasks, two additional loss terms are
calculated on poses and velocities of the source container to
penalize it from colliding with the target container.

b) Cloth2MPM: We verify soft-cloth coupling with
make taco. The tortilla and taco fillings are simulated as
clothes and MPM particles, respectively. We conduct 4 DoFs
control over two selected points of the tortilla and fold the
taco into target shape. The state space is combination of the
30000 DoFs taco fillings and the 651 DoFs tortilla. Loss is
computed on taco fillings as the Chamfer distance between
current and target configurations. To avoid overly stretching
the tortilla, we control the particles in the perpendicular plane
through circle center and project the control points back to
a confined region after each epoch.

c) MPM2Rigid/Cloth: We check two-way differen-
tiable coupling by controlling soft grippers to manipulate
articulated rigid bodies or clothes. We control MPM by
exerting an impulse on selected particles in P2G transfer.
In pull door, we control the elastic gripper to pull the door
into target angle. In push towel, we control the elastic gripper
to push the 432 DoFs towel into target pose. We computed
losses on the state of rigid bodies / clothes and optimize the
control over soft grippers.

The pour water and make taco tasks are optimized for
40 and 25 iterations respectively, costing 21.67s and 20.45s

for each iteration on average on an NVIDIA Tesla T4
GPU. Experiment results reported in fig. 7 demonstrate the
correctness and effectiveness of our differentiable simulation.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduce SoftMAC, a differentiable
simulation that couples soft bodies with articulated rigid
bodies and clothes. We simulate soft bodies with mate-
rial point method, and provide a novel contact model that
reduces artifacts like penetration and unnatural rebound.
To couple soft body particles with deformable and non-
volumetric clothes meshes, we propose a method to recon-
struct signed distance field in local area. We also utilize
a two-way differentiable dynamics coupling mechanism to
unify the simulation of different materials. Comprehensive
experiments are conducted in robotic manipulation scenarios
and demonstrate the correctness and effectiveness of the
differentiable simulation.

One limitation of this work lies in the assumption that
cloth meshes are manifold and not pressed together for
penetration tracing. The assumption is grounded in the un-
derlying cloth simulator [10] that uses Incremental Potential
Contact [38] to guarantee a gap between meshes. However,
addressing penetration tracing challenges in complex fabric
arrangements remains an open problem and requires further



exploration for a comprehensive solution. Another drawback
is rooted in computational efficiency. The MPM simulator
in SoftMAC is developed using Taichi to support massive
parallelism on GPUs. However, the rigid body and cloth
simulators run on CPUs. The rate of state and gradient
transfer between CPUs and GPUs is restricted by bandwidth
and impacts overall performance. We leave the development
of GPU-based differentiable rigid body and cloth simulators
with necessary interfaces as future work.
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